
U.S. Department of Commerce

National Oceanic and Atmospheric Administration

National Weather Service

National Centers for Environmental Prediction

5830 University Research Court

College Park, MD 20740

Office Note 480

Recovery of aircraft vertical motion profiles
from incomplete data – an application of

the method of splines

R. James Purser∗, Yanqiu Zhu

IM Systems Group, Rockville, Maryland

and Bradley A. Ballish

Environmental Modeling Center

November 21, 2014

This is an unreviewed manuscript, primarily intended for informal

exchange of information among the ncep staff members

∗ email: jim.purser@noaa.gov



Abstract

It has been determined that the biases in temperature reports from Aircraft Meteorological
Data Relay (AMDAR) measurements exhibit a dependence, among other predictors, upon
the vertical component, dh/dt, of the aircraft motion. While some aircraft report frequently
and to the nearest second, and so provide data that are easily and directly applicable to the
bias-correction problem, some other aircraft report infrequently and only to within the nearest
minute, which makes it much harder to deduce their instantaneous vertical velocity component
at each of their reporting times during their irregular ascending or descending flight trajectories.
The problem of interpolating the likely vertical motion from such incomplete data seems suited
to a solution by application of the method of numerical splines, which we describe in this short
note.

1. Introduction

Experience with the assimilation of aircraft-derived temperature measurements, such as
those derived from the Aircraft Meteorological Data Relay (AMDAR) system (Schwarz and
Benjamin, 1995; Rienecker et al. 2011), has revealed that, among the predictors of measurement
bias, are some of the aircraft flight parameters themselves (Ballish and Kumar, 2008; Dee and
Uppala 2009). In particular, the aircraft altitude, h, and the vertical velocity component, dh/dt,
at each time, t, are important predictors in this respect. While many aircraft report accurate
altitudes at times accurate to the nearest second and at a frequent rate during the ascending
and descending phases of flight, owing to historical bandwidth limitations, other aircraft report
rather less frequently and at times report effectively only to the nearest minute. From these
latter styles of reports it is problematic to extract the critical vertical motion information with
sufficient accuracy and reliability to establish the proper bias corrections for the other reported
data. Nevertheless, we must make the effort to deduce what we can from the limited data
available, and one attractive approach to dealing with this problem is to exploit and adapt the
classical curve-fitting method of numerical “splines” (Schoenberg, 1946; Curry and Schoenberg,
1947; de Boor, 1978; Wahba, 1990).

In this brief note we outline in the next section the method of deriving useful spline functions
that accord with a variational principle and extend their application, in section 3, to situations
where the constraints occur in the form of inequalities rather than the more common equality
constraints at the nodes of the spline. We further show how the intrinsic “energy” of the spline,
the quantity minimized in its variational definition, can be used to decide the choice of solution
in cases, relevant to our aircraft trajectory problem, where several distinct plausible options
present themselves for the route threading the inequality constraints. Finally, we discuss the
possible extensions of the spline method that could be adopted for other kinds of constraints
or data types.



2. The principles of splines

(a) Equality constraints

We approach the problem of constructing a spline from the standpoint of minimizing a
suitable quadratic form on the derivatives. The traditional drafting spline is a thin elastic
ruler, pinned by weights or pivots to pass through a preselected set of “knots” or “nodes”,
resulting in an elastostatic configuration in which the integrated elastic energy is minimized.
The classical numerical idealization of this spline (Schoenberg 1946) is the curve constrained
at the given nodes such that the energy idealization obtained by integrating the square of the
second derivative of lateral displacement is minimized. The assumption being made here to
justify the elastostatic analogy is that the lateral deflection, y, is always sufficiently small to
make the first derivative negligible in the sense, |dy/dx| ≪ 1. The mathematical theory of splines
is covered in, for example, Ahlberg et al. (1967), de Boor (1978), while “splines in tension”
were introduced by Schweikert (1966). Additional variational aspects and generalizations are
discussed in Wahba (1990).

In the idealization in which the spline is considered to possess tension an additional com-
ponent of energy needed to bend the spline into its constrained configuration is identified
with the work done against the tensile force to gather the additional needed length, approx-
imated in the numerical idealization by half the integral of the square of the first derivative,
i.e.,

∫ 1
2(dy/dx)2 dx. In these numerical idealizations, we find that the classical (untensioned)

spline is piecewise cubic polynomial, while the tensioned generalizations involves exponential
functions, as we shall discover below from formal solutions of the energy integrals.

In general, the tensioned spline must minimize an energy proportional to
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where the square of characteristic x-scale, T , of the spline emerges as the ratio between the
spline’s intrinsic “bending stiffness” and the imposed tension. But it must also respect the
given constraints, which we can define at the m nodes, x̂i, as the list of constraints:

y(x̂i) = ŷi, for i = 1, . . . m. (2.2)

We can formally incorporate these constraints into the variational integral by means of delta-
function contributions modulated by a set of Lagrange multipliers, Ji:
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The interpretation of the quantities, Ji, in the elastostatic analogy is that they are the transverse
forces applied to the spline at the nodes, x̂i. The standard Euler-Lagrange procedure then tells
us that the solution must obey the fourth-order elliptic equation:

−
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Jiδ(x − x̂i) = 0, (2.4)
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Figure 1. A comparision of the behavior of the untensioned cubic polynomial spline (left panels) and the
standardized tensioned spline (right panels) for a simple case of four constraints (shown by the “+” symbols in
the top panels. In successive rows we have the spline function, its 1st, 2nd and 3rd derivative, and the energy
density profile. The arrows in the top panels indicate the “forces” at the constraints, that is, the jump in the

3rd-derivative at each node..

with the Ji set to make (2.2) true. In the generic case of positive finite T , which is the case
of greater interest to us, a convenient simplification is achieved by expressing the independent
variable, x, in units of T itself. If we assume this has been done, then the solution between any
consecutive pair of the constraints takes the equivalent forms,

y(x) = a + bx + c exp(x) + d exp(−x), (2.5)

or
y(x) = p + qx + rC(x) + sS(x), (2.6)
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where we define:

C(x) = cosh(x) − 1 (2.7a)

S(x) = sinh(x) − x. (2.7b)

In the limiting case where the spline tension vanishes, we do not rescale x but we achieve
a more significant simplification through the omission of the first term in (2.3), and hence also
the first term of (2.4). The hyperbolic, or exponential functions disappear and in their place
we are left with their limiting forms, the cubic polynomials:

y(x) = p + qx + r
x2

2
+ s

x3

6
. (2.8)

(Another limiting case, where the bending stiffness, but not the tension, vanishes, leads to the
piecewise linear solution we expect from what has effectively become tensioned string; this case
is of no further interest to us.)

The qualitative distinction between the behavior of ordinary and tensioned splines is visible
in the comparative plots of these splines and their derivatives shown in Fig. 1 and discussed in
the caption. The tensioned spline is valued for its inherent suppression of large excursions in the
broader gaps between constraints, as well as outside the spatial range of the constraints where,
unlike the ordinary spline, any residual slope still incurs a penalty of energy (whose density is
plotted in the bottom panels) and therefore causes the spline to “level off” exponentially.

As we observe by integrating (2.4), there appears a discontinuity in the third derivative of
magnitude:
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= Ji, (2.9)

at each node, where the coefficients sets, {a, b, c, d} or {p, q, r, s}, change crossing each node,
and where x̂i− and x̂i+ denote the left and right side evaluations of the discontinuity in the
function, crossing the node x̂i. The derivatives below third-order, as well as the value itself,
remain continuous. For the energy to be minimized, it must certainly remain finite, and this is
only possible when, for x < x̂1, the coefficients b = 0 and d = 0 (equivalently, q = r = s) while,
for x > x̂m, the coefficients b = 0 and c = 0 (equivalently, q = −r = s). It is then easy to confirm
that, if we adopt x̂1 for a local origin, the portion of the energy integral coming from x < x̂1 = 0 is
just q2

1/2, where q1 is dy/dx|x1
, and, likewise, adopting x̂m as a local origin for the calculation of

the energy integral over the other infinite segment, x > xm, that portion of the integrated energy
comes to q2

m/2. The contributions to the energy integral coming from each interior segment is
more complicated to evaluate, and we refer to the appendix for algebraic details. But we can
immediately see that, in the generic interior segment [x̂i, x̂i+1], the spline function’s quartet
of coefficients, say {p, q, r, s}, about a suitable origin, can be expressed as linear functions
of the spline value and its first derivative at the two ends of this segment. Therefore the
energy contribution, Ei, coming from this segment must be a quadratic expression in only
these same four quantities. Moreover, the symmetries (energy unchanged by a constant change
in y, and unchanged by mirror reflection of the spline function about the midpoint of the
interval) substantially simplify the algebra since we know that terms in the spline values can
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only come from each difference, ŷi+1 − ŷi, multiplied by itself, or that difference multiplied by
the local endpoint sum, q̂i + q̂i+1 of the spline derivatives, where we define q̂i = dy/dx|x̂i

. Once
we know all the q̂i, then since we already know the ŷi (which are given) it is straightforward to
interpolate to interior values of x̂i ≤ x ≤ x̂i+1.

The spline equations are “solved” as a tridiagonal energy matrix linear system for the m-
vector q of the components, q̂i, by seeking the minimum of the energy defined by:

E =
1

2
qT Q q + (σq)T Rδ p +

1

2
(δp)T P δp, (2.10)

whose solution involves the easily solved symmetric tridiagonal linear system:

Qq = v, (2.11)

where
v = −σT R δp, (2.12)

where p is the vector of nodal spline value components, ŷi, the bidiagonal operator, δ, is the
difference matrix whose ith row comprises column elements at positions i and i + 1 of −1 and
+1 respectively, and where the bidiagonal operator, σ, is the pairwise sum matrix whose ith row
comprises column elements at positions i and i + 1 of +1 and +1. The R and P are diagonal
matrices of dimension m − 1. The derivation of the components of Q, P and R appears in
the appendix. The energy E is computed along with vector, q of nodal derivatives, but, in the
more general applications of the spline method governed by inequality constraints, dealt with
in the next subsection, we also need the vector J of “jumps” in the 3rd derivative, as defined
by (2.9). The components Ji may be obtained from the nearest three consecutive qi and two
∆pi by means of a formula also given in the appendix.

In the special limiting case obtained when the tension is allowed to vanish, there is no
rescaling of x to be done, and the computations further simplify with piecewise cubic polynomial
solutions. This case is also dealt with in the appendix. There is another special case – where
the spline stiffness, relative to the tension, is allowed to become negligible, and in this case
the spline acts like tensioned string with a simpler solution that is piecewise linear between
nodes and constant beyond both ends. Since, in this limit, the derivative is not uniquely
defined at nodes (where we need estimates of it), this special case is hardly of direct interest
to us, although, because it involves considerably simpler computations, it could be of value in
suggesting the form of likely solutions in the more complicated spline solutions constrained by
a series of inequalities, which we discuss next.

(b) Inequality constraints

We have already noted that the Ji are interpreted as the transverse “forces” needed to keep
the spline passing through all the active constraints. Clearly therefore, if we replace equality
constraints, pi = ŷi, by inequality constraints of the form,

(pi − ŷi)bi ≥ 0, (2.13)

where the bi are a series of “signs”, ±1, we expect the force Ji to vanish whenever pi 6= ŷi in the
solution, and the sign of Ji, if nonzero, to match bi whenever the constraint is “activated” in the
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sense that pi = ŷi in the solution. Such inequalities are particularly simple examples of linear
inequality constraints and, if any spline solution can be found that is consistent with all these
constraints, then there is certainly one amongst these solutions that also minimizes the energy.
A spline conforming to the inequalities (but not necessarily the optimal one) is said to be “feasi-
ble”. This is standard technical usage of the word in general mathematical optimization under
inequality constraints (see, for example, Rockafellar 1970). A viable solution algorithm is one
that starts with a guaranteed feasible spline and, step-wise, switches the inequality constraints
between active “on” and inactive “off” mode in such a way that feasibility is maintained and
spline energy progressively decreases. One algorithm that follows this prescription will now be
described.
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Figure 2. Stages in the solution of a tensioned spline problem constrained by inequalities equivalent to a
succession of slalom gates, here shown for a trivial case of just two gates. Initially (panel (a)), the spline is fitted
to as many compatible constraints as possible and the signs of each 3rd-derivative “jump” (the blue arrows) are
compared to the signs implied by the inequalities (indicated by the oriented triangles). In this example, all the
signs are wrong, so all but one of the constraints are switched off (b). The new spline fails to pass through the
first gate, the positional inequality being wrong for the first gatepost. The constraint associated with the first
gatepost is switched back on, and the new and final solution, panel (c), is found to obey all the inequalities (the
directions of the blue arrows conform with those of the oriented triangles where the constraints are “on”, while

the positional relations elsewhere are also of the correct sense).

First we step along the abscissa of increasing x and, as soon as we encounter an inequality
constraint at a new value of x, we force the activation of one constraint there. Thus, there may
be some potential nodes that are duplicated, x̂i = x̂j , for i 6= j, in which case, we activate only
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the constraint i as an equality condition, pi = ŷi and leave constraint j as a satified inequality.
But for every x that is a node, at least one constraint there is active at the start of the procedure.
We solve the spline, that is, we minimize the energy under the prescribed equality constraints
and obtain our starting feasible, though generally not necessarily optimal, spline solution. The
crucial step in this “A” iteration is to examine all the quantities, biJi, for those constraints that
are “on” and determine whether any are negative. If not, we are done – our solution is both
feasible and energetically optimal with the jump conditions (in the third derivative) all of the
correct sign (or possibly zero in degenerate special cases).

But let us suppose that there are violations of the jump conditions found during this “A”

iteration. First, we record the actual values, say, p
(A)
i = y(x̂i), of this feasible spline at all of

the nodes, x̂i. Then we deactivativate, i.e., switch “off”, those constraints just found to have
violated the jump conditions and enter what we refer to as the “B” iteration. In the “B”
iteration, we solve for what is possibly not a feasible spline, for which the nodal values are now

p
(B)
i = y(x̂i), and we examine those constraints that are switched “off” to see whether any of

these p
(B)
i violate the prescribed positional inequalities. If not, we exit the B-iteration. But if a

positional inequality is violated, there is at least some largest positive “under-relation” factor,
u < 1, such that the affine mixture of the two most recent splines is once again feasible; this

new feasible spline replaces the one with the nodal values designated p
(A)
i :

p
(A′)
i = p

(A)
i + u[p

(B)
i − p

(A)
i ], (2.14)

and, since the spline functions are linear, their derivatives, qi, at all the nodes are similarly
interpolated:

q
(A′)
i = q

(A)
i + u[q

(B)
i − q

(A)
i ]. (2.15)

The largest such u able to recover the property of “feasibility” causes equality, p
(A′)
j = ŷj for one

of the hitherto “off” constraints, j, which is therefore activated (or reactivated) to “on”. With
the new feasible state designated as the new A-spline, the B-iteration is repeated. Thus, the
B-iterations switch constraints “on” (but only one at a time) while the A-iterations can only
switch constraints “off”. Each successive return to the A-loop in this procedure diminishes the
spline energy, so a convergence is guaranteed.

The interplay between the A-loop and B-loop steps is illustrated in the sequence shown in
Fig. 2. Here there are two “slalom gates” through which the spline is required to descend, so
this is a relatively trivial case.

In a less trivial case we can look at the effect of changing the time scale parameter, T for
the tensioned splines: The only difference between the left and right panel of Fig. 3 is that,
on the left we use T = 300s and on the right, T = 30s. Clearly, the effects for this relatively
straightforward profile are minimal in this case, except in the two regions of extrapolation
within the exterior segments, bottom and top.

In descending profiles, we might more often see a pause in the change of altitude, and in
such cases, the differences between choices of the time constant tend to be more pronounced.

Figure 4 illustrates significant sensitivity of the time constant, T . At the two altitudes
(near 7000m and 3000m) of brief hesitation in the otherwise monotonic descent, the spline
solution with the longer time constant (left panel) “bounces” in order to keep the acceleration
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Figure 3. Tensioned spline problem for an ascending flight. The left panel shows the results when the time
constant of the spline is T = 300 seconds; on the right is the corresponding solution with T = 30 seconds.

relatively small. When the tension is increased, and hence the time constant T diminished
(right panel), the integrated acceleration becomes larger, the direction changes becoming more
abrupt, as the solution is found that maintains a smaller integrated squared-vertical velocity,
but the hesitation in the descent near 7000m is no longer a feature of the interpolated profile;
it was probably merely an artifact in the case (left panel) with larger T = 300s.

(c) Route combinatorics and final route selection

A prerequisite for the solution of a given slalom spline is a specification of the “mode of
passage”, the sequence of binary alternatives of either descent or ascent, through each of the
slalom gates. The complete set of geometrically possible combinations in a flight with many
gates becomes too numerous for it to be practical to test all of them. Fortunately, we seldom
err in using the heuristic decision to force “ascent”/“descent” upon the middle gate of any con-
secutive three whose relative altitudes reveal them to be in unequivocal ascending/descending
order. But there are questionable cases, such as the gates at the beginning and end of a flight,
where the mode of passage is ambiguous.

In those cases where the slalom gates follow directly from one to the next without inter-
mission, geometrical considerations limit the number of combinations possible, regardless of
the above-mentioned heuristic restrictions on ascent or descent. These geometrical restrictions
can be conveniently coded, for each gate, as a two-digit trinary number, which we refer to
as the “route code”, with values between 0 and 8, whose trinary digits are referred to as the
“option codes” (with values from 0, 1, or 2). The code works as follows. If the preceding gate
is threaded in the descending sense then the geometrical or heuristic constraint is encoded in
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Figure 4. Tensioned spline problem for a descending flight. The left panel shows the results when the time
constant of the spline is T = 300 seconds; on the right is the corresponding solution with T = 30 seconds.

the option code, OD; alternatively, if the preceding gate is threaded in the ascending sense, the
constraints become those encoded by option code, OA. If an option code is 0, then, when it is
in effect, passage through the present gate can be in either sense; when it is 1, passage must
be descending through the present gate; when it is 2, passage must be ascending though the
present gate. The route code for each gate is just,

C = OD + 3 × OA. (2.16)

If there is no restriction, regardless of the state of passage through the preceding gate, or if there
is no preceding gate (as at the beginning of a flight), then both option codes are zero and so
is the route code, C. If the heuristic considerations led us to dictate passage in the descending
sense, regardless of the sense in which the preceding gate was threaded, then the resulting route
code must be C = 1 + 3 × 1 = 4; conversely, dictating ascent unconditionally means specifying
that C = 2 + 3 × 2 = 8. The less trivial examples come from the cases where consecutive gates,
each possibly containing several distinct height measurements to give the gate depth (in height)
as well as breadth (in time), are illustrated in the figures, 5–8. In Fig. 5 we see consecutive and
adjoining gateways with a gap in height between them, the second being higher than the first.
We are interested in the route code for the second gateway. If the sense of passage through the
first gateway is upwards, as it is in the first two panels, the trajectory can either ascend (first
panel) or descend (second panel) through the second gateway, so the “ascending” option code
is OA = 0. But if the threading of the first gateway is “descending”, as in the third panel, the
mode of passage through the second gateway can only be upwards, so the “descending” option
code is OD = 2. The result is a route code for this second gateway of C = OD + 3 × OA = 2.
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The situation in Fig. 6 is just the height-reversed image of that in Fig. 5 and the analogous
arguments determine that, with OD = 0 and OA = 1, the route code is C = 0 + 3 × 1 = 3.

Figure 5. The three geometrically possible routes through a pair of adjoining consecutive gateways where the
second resides wholly above the first. The route code is C = 2, as explained in the text.

Figure 6. The three geometrically possible routes through a pair of adjoining consecutive gateways where the
second resides wholly below the first. The route code is C = 3 in this case.

Figure 7. The two geometrically possible routes through a pair of adjoining consecutive gateways. The second
gateway lies mainly above the first but since they overlap or touch in height, there is no gap that would allow
passage in the same sense through both gateways. The route code is therefore C = 5, as explained in the text.

There can be cases where consecutive gateways adjoin in time and overlap in their heights.
Fig. 7 shows such an example, the second gateway being mostly at a higher altitude but without
the definite gap in height that would allow a trajectory to slip through gateways ascending
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through both. In this case descent through the first implies ascent through the second, and
vice versa, so the option codes are OD = 2 and OA = 1 and the route code is C = 5. Fig. 8
shows that, although we might reverse of the height relationships, we do not alter the form
of the geometrical restriction, and the route code remains C = 5. In fact, one or other of the
gateways’ height range might completely overlap that of its neighbor and the geometrical forced
alternation of the mode of passage would still be in effect.

Figure 8. Although the height relationship between the two consecutive and adjoining gateways is the opposite
of that shown in Fig 7, the same geometrical restrictions apply and the route code is, again, C = 5.

When the sequence of route codes are all determined, it is a very straightforward matter
to step through each allowable route systematically, find the slalom spline solution for that
route, together with its spline-energy, and finally to select the single route and associated
spline solution that globally minimizes the spline energy. Moreover, in practice, the number of
combinations we are obliged to test in this way rarely exceed a modest handful (most typically
four), since heuristic decisions force either uniform descent or ascent in the interior portions of
almost all the flights we encounter in these presorted aircraft datasets.

The natural question arises: how well does the slalom spline provided with 60 second-wide
gates artificially constructed from data with, say, 6 second-wide tolerances, match the trajectory
and vertical velocity component of the spline applied directly to the more informative data?
In most of the smooth and monotonic ascents and descents the fit seems to be very good.
Fig. 9 provides a real data case of an ascent (left panel) where, near the top of the climb, the
hestitation caught by the finer data (blue curve) is not quite captured after coarsening (red
curve). In such a case, it is very hard to see how it would be possible, even in principle, to
recover this missing feature and its accompanying vertical velocity profile. On the other hand,
for the descent case shown in the right panel the match between the two estimated trajectories
is remarkably good. But while this result is encouraging as a validation of our spline approach,
the value of acquiring the more precise temporal data if possible, is also convincingly confirmed
by this exercise.

3. Discussion and conclusions

We have formulated and described a method of recovering aircraft vertical trajectory profiles
from data assumed accuracte in height but incomplete in time, using a method of tensioned
splines and the selection criterion of minimizing the spline’s “energy” to identify the best
topology of trajectory consistent with these equality and inequality constraints. The algorithm
appears to be perfectly robust and its numerical efficiency has so far proven to be adequate.
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Figure 9. Two cases (ascending and descending) where the data given initially at the nearest second are arti-
ficially degraded to sparser data known only to the nearest minute. The “forbidden” regions of the respective
slalom splines are shaded in different tones and superimposed. The curves fitting the original fine data, with gates
of width 6s, are drawn in blue; the curves threading the coarser slalom gates following the artifial degradation

of the temporal information to gates of width 60s are drawn in red.

However, should it ever become necessary to process much longer trajectory segments than
those that are typical of present operations, it might become necessary to refine the present
algorithm in order to circumvent the likely growth in the number of combinations needing
to be tested. This could easily be done by dividing a long trajectory into short overlapping
sections, with a relatively minor modification to the slalom spline solver to accommodate the
inevitable situation where intermediate reconnected trajectory constraint configurations will
not generally correspond to “feasible” splines (i.e., they will generally not correctly thread all
the gateways when we simply concatenate consecutive sections of constraints). If a “recapture”
algorithm is appended to the suite to deal with this kind of problem, then it might also be worth
investigating whether a compuational speed-up can be obtained by finding an interim solution
to each spline problem using the more conventional untensioned (cubic) splines to provide a
close “first guess” to the final tensioned spline solver. The cubic splines are algebraically simpler
and their computional solution times are found to be approximately two and a half times faster
than those of the equivalent tensioned splines (algebraic function evaluations being cheaper
than evaluations of hyperbolic or exponential functions).

We have assumed in these estimation and interpolation procedures that, although the time
data are uncertain (plus or minus thirty seconds, typically) the height data are precise. Strictly,
it is closer to the spirit of conventional data assimilation to assume that the height data them-
selves contain some random error. So another future generalization which might be desirable
to investigate is the case where the constraints at “gateposts” remain one-sided, but are also
progressive in their effect (i.e., conditional “weak” constraints). The implicit “switches” ac-
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tivating or deactivating the constraints would remain, but the character of the optimization,
once these switches are set, would then change to one without any Lagrange formal multiplier
variables (which would instead have become absorbed in a more purely quadratic variational
minimization).
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Appendix A

Constructing the coefficients of the linear system defining the spline

We shall imagine the abscissa x of the spline function to run from left to right and consider
first the spline solution in the semi-infinite segment left of x̂1. If we redefine the x coordinate
so that this first node is the origin, q̂1 is the derivative, y(1) ≡ dy/dx, there. Then, defining
higher derivatives similarly, the form of the spline function and its first two derivatives in this
segment when x is scaled to make T = 1 must be:

y(x) = p̂1 + q̂1(exp(x) − 1) (A.1a)

y(1)(x) = q̂1 exp(x) (A.1b)

y(2)(x) = q̂1 exp(x) (A.1c)

y(3)(x) = q̂1 exp(x), (A.1d)

and hence the energy integral in the “segment 0” is just:

E0 =

∫ 0

−∞

1

2
(y(1))2 +

1

2
(y(2))2 dx

= q̂2
1

∫ 0

−∞

exp(2x) dx

=
1

2
q̂2
1. (A.2)

Similarly, in the semi-infinite segment to the right of the final node, x̂m, we can also redefine
the coordinate x to make this end node the origin, whereupon the general form of the spline
function passing through p̂m = ŷm is:

y(x) = p̂m + q̂m(1 − exp(−x)), (A.3a)

y(1)(x) = q̂m exp(−x), (A.3b)

y(2)(x) = −q̂m exp(−x), (A.3c)

y(3)(x) = q̂m exp(−x), (A.3d)

and the energy contribution of this segment is

Em =
1

2
q̂2
m. (A.4)
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The equation of the standardized tensioned spline between nodes, and the corresponding
energy contribution, are more complicated to compute, but we start by resetting the coordinate
origin to the segment midpoint so that we can exploit symmetries. We suppose the half-width
of the segment to be Xi. It is algebraically convenient to introduce special functions:

C(x) ≡ cosh(x) − 1, (A.5a)

S(x) ≡ sinh(x) − x, (A.5b)

K(x) ≡ xC(x) − S(x) = x cosh(x) − sinh(x), (A.5c)

and write the equation of the spline and its derivatives in segment i between nodes x̂i = −Xi

and x̂i+1 = +Xi as:

y(x) = p + qx + rC(x) + sS(x), (A.6a)

y(1)(x) = q + r sinh(x) + sC(x), (A.6b)

y(2)(x) = r cosh(x) + s sinh(x), (A.6c)

y(3)(x) = r sinh(x) + s cosh(x). (A.6d)

We define p− = p̂i = y(−Xi), p+ = p̂i+1 = y(Xi), q− = q̂i = y(1)(−Xi), q+ = q̂i+1 = y(1)(Xi). We
define consecutive sums and differences:

(σp)i
def
= p− + p+, (A.7a)

(δp)i
def
= p+ − p−, (A.7b)

(σq)i
def
= q− + q+, (A.7c)

(δq)i
def
= q+ − q−, (A.7d)

the spline function in this interval can be expressed equivalently as the sum of functions with
either odd or even symmetry:

y(x) =
(σp)i

2
+

(δp)iF (x) + (σq)iG(x)

2K(Xi)
+

(δq)iH(x)

2 sinh(Xi)
, (A.8)

where we define odd functions F and G and even function H, and their derivatives, by:

F (x) = xC(Xi) − S(x), (A.9a)

F (1)(x) = C(Xi) − C(x), (A.9b)

F (2)(x) = − sinh(x), (A.9c)

F (3)(x) = − cosh(x). (A.9d)

G(x) = XS(x) − xS(Xi), (A.10a)

G(1)(x) = XC(x) − S(Xi), (A.10b)

G(2)(x) = X sinh(x), (A.10c)

G(3)(x) = X cosh(x). (A.10d)
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H(x) = C(x) − C(Xi), (A.11a)

H(1)(x) = sinh(x), (A.11b)

H(2)(x) = cosh(x), (A.11c)

H(3)(x) = sinh(x). (A.11d)

The terms that contribute to the segment energy,

Ei =
1

2

∫ Xi

−Xi

y(1)y(1) + y(2)y(2) dx, (A.12)

for the interior segment reduce to:

Ei =
IFF (δp)2i
4K2(Xi)

+
IFG(δp)i(σq)i

2K2(Xi)
+

IGG(σq)2i
4K2(Xi)

+
IHH(δq)2i

4 sinh2(Xi)
, (A.13)

where we define the four integrals,

IFF ≡
1

2

∫ Xi

−Xi

F (1)(x)F (1)(x) + F (2)(x)F (2)(x) dx = cosh(Xi)K(Xi), (A.14a)

IFG ≡
1

2

∫ Xi

−Xi

F (1)(x)G(1)(x) + F (2)(x)G(2)(x) dx = − sinh(Xi)K(Xi), (A.14b)

IGG ≡
1

2

∫ Xi

−Xi

G(1)(x)G(1)(x) + G(2)(x)G(2)(x) dx = X sinh(Xi)K(Xi), (A.14c)

IHH ≡
1

2

∫ Xi

−Xi

H(1)(x)H(1)(x) + H(2)(x)H(2)(x) dx = cosh(Xi) sinh(Xi). (A.14d)

Hence,

Ei =
(δp)2i cosh(Xi)

4K(Xi)
−

(δp)i(σq)i sinh(Xi)

2K(Xi)
+

(σq)2i X sinh(Xi)

4K(Xi)
+

(δq)2i cosh(Xi)

4 sinh(Xi)
, (A.15)

and we can identify how these terms fit into the components of diagonal matrices P and R of
section 2:

P i =
cosh(Xi)

2K(Xi)
, (A.16a)

Ri = −
sinh(Xi)

2K(Xi)
. (A.16b)

The elements of the tridiagonal, Q, combining these interior contributions with the exterior
contributions (A.2) and (A.4) can now be seen to be:

Qi,i = Q̂i−1 + Q̂i, 1 ≤ i ≤ m (A.17a)

Qi,i+1 = Qi+1,i = Q̃i, 1 ≤ i < m, (A.17b)

where,

Q̂i =

{

1 : i = 0, i = m
Xi sinh(Xi)

2K(Xi)
+ cosh(Xi)

2 sinh(Xi)
: 0 < i < m

, (A.18)
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and

Q̃i =
cosh(Xi)

2 sinh(Xi)
−

Xi sinh(Xi)

2K(Xi)
. (A.19)

The untensioned (cubic polynomial) splines can be obtained as the formal limit of the
tensioned splines as the tension goes to zero; in this case we can make the formal substitutions
in the expressions above to obtain to correct formulae in this limit (and with no scaling of x):

cosh(x) → 1, (A.20a)

sinh(x) → x, (A.20b)

C(x) → x2/2, (A.20c)

S(x) → x3/6, (A.20d)

K(x) → x3/3. (A.20e)

From these limiting forms we deduce that, for the purely cubic splines,

F (x) =
3X2

i x − x3

6
, (A.21a)

F (1)(x) =
X2

i − x2

2
, (A.21b)

F (2)(x) = −x, (A.21c)

F (3)(x) = −1. (A.21d)

G(x) =
Xix

3 − X3
i x

6
, (A.22a)

G(1)(x) =
3Xix

2 − X3
i

6
, (A.22b)

G(2)(x) = Xix, (A.22c)

G(3)(x) = Xi. (A.22d)

H(x) =
x2 − X2

i

2
, (A.23a)

H(1)(x) = x, (A.23b)

H(2)(x) = 1, (A.23c)

H(3)(x) = 0. (A.23d)

The functional form taken by y in the interval becomes:

y(x) =
(σp)i

2
+

(δp)i(3X2
i x − x3) + (σq)i(Xix

3 − X3
i x)

4X3
i

+
(δq)i(x

2 − X2
i )

4Xi
. (A.24)

The integrals that contribute to the energy in this limiting case become:

IFF =
X3

i

3
, (A.25a)
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IFG = −
X4

i

3
, (A.25b)

IGG =
X5

i

3
, (A.25c)

IHH = Xi. (A.25d)

The energy integrated over interior segment i is the simplified form:

Ei =
1

2

∫ Xi

−Xi

y(2)y(2) dx, (A.26)

which evaluates to:

Ei =
3(δp)2i
4X3

i

−
2(δp)i(σq)i

3X2
i

+
3(σq)2i
4Xi

+
(δq)2i
4Xi

. (A.27)

Now,

P i =
3

2X3
i

, (A.28a)

Ri = −
3

2X2
i

. (A.28b)

In this case,

Q̂i =

{

0 : i = 0 or i = m
2

Xi
: 0 < i < m

, (A.29)

and

Q̃i =
1

Xi
. (A.30)
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